If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-128+x^2-8x=0
a = 1; b = -8; c = -128;
Δ = b2-4ac
Δ = -82-4·1·(-128)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-24}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+24}{2*1}=\frac{32}{2} =16 $
| 9x^2-2x+41=0 | | 3(x+1)+1=2x-2(2x+2)+x | | 3x+5(1+2×)=5×-11 | | 2/3(6x+3)=3x+2 | | 585=x(.1)-x | | 15y+49=109 | | 4x-(12/3)+x=20 | | 585=x(.1) | | 4x+3=5x- | | (x+3)2+(2x-6)2=26 | | 20=6+38t-16t^2 | | 3x^2+4,5x=0 | | 3x^2+4,5=0 | | Y=4x^2-24x-7 | | 3x^2-4,5x=0 | | 43=3x-7 | | 26=5+3b | | 4x-20+2x-10=210 | | (7x+32)=(12x-38) | | -28+1.5-22z=31 | | 20n-20=6n | | 5x^2+5x-21=11-7x | | -10a^2+15=19a | | (x-1/x-2)-(x-2/x-3)=(x-5/x-6) | | -6=9-x4+7 | | 1/6x^2-36=0 | | 5/x=30/6 | | 6+2(12-x)=4(x-1)-1.1 | | -4x-1+9x=3x+1 | | (12x-38)=(7x+32) | | 12-8=x+3 | | 65=b5 |